A two-step strategy for neuronal differentiation in vitro of human dental follicle cells.

نویسندگان

  • Florian Völlner
  • Wolfgang Ernst
  • Oliver Driemel
  • Christian Morsczeck
چکیده

Human dental follicle cells (DFCs) derived from wisdom teeth are precursor cells for cementoblasts. In this study, we recognized that naïve DFCs express constitutively the early neural cell marker beta-III-tubulin. Interestingly, DFCs formed beta-III-tubulin-positive neurosphere-like cell clusters (NLCCs) on low-attachment cell culture dishes in serum-replacement medium (SRM). For a detailed examination of the neural differentiation potential, DFCs were cultivated in different compositions of SRM containing supplements such as N2, B27, G5 and the neural stem cell supplement. Moreover, these cell culture media were combined with different cell culture substrates such as gelatin, laminin, poly-L-ornithine or poly-L-lysine. After cultivation in SRM, DFCs differentiated into cells with small cell bodies and long cellular extrusions. The expression of nestin, beta-III-tubulin, neuron-specific enolase (NSE) and neurofilament was up-regulated in SRM supplemented with G5, a cell culture supplement for glial cells, and the neural stem cell supplement. DFCs formed NLCCs and demonstrated an increased gene expression of neural cell markers beta-III-tubulin, NSE, nestin and for small neuron markers such as neuropeptides galanin (GAL) and tachykinin (TAC1) after cultivation on poly-L-lysine. For a further neural differentiation NLCC-derived cells were sub-cultivated on laminin and poly-L-ornithine cell culture substrate. After 2 weeks of differentiation, DFCs exposed neural-like cell morphology with small neurite-like cell extrusions. These cells differentially express neurofilament and NSE, but only low levels of beta-III-tubulin and nestin. In conclusion, we demonstrated the differentiation of human DFCs into neuron-like cells after a two-step strategy for neuronal differentiation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Differentiation of Mesenchymal Stem Cells Derived From Human Adipose Tissue into Cholinergic-like Cells: In Vitro Study

Introduction: Cholinergic-associated diseases currently constitute a significant cause of neurological and neurodegenerative disabilities.  As the drugs are not efficient in improving the suffered tissues, stem cell treatment is considered an effective strategy for substituting the lost cells. Methods: In the current study, we set out to investigate the differentiation properties of human adip...

متن کامل

Capacity of Human Dental Follicle Cells to Differentiate into Neural Cells In Vitro

The dental follicle is an ectomesenchymal tissue surrounding the developing tooth germ. Human dental follicle cells (hDFCs) have the capacity to commit to differentiation into multiple cell types. Here we investigated the capacity of hDFCs to differentiate into neural cells and the efficiency of a two-step strategy involving floating neurosphere-like bodies for neural differentiation. Undiffere...

متن کامل

ایزولاسیون و شناسایی سلول‌های بنیادی مزانشیمی مشتق از بافت پالپ و فولیکول دندان مولر سوم انسان

Background and Aims: In the last decade, several studies have reported the isolation of stem cell population from different dental sources, while their mesenchymal nature is still controversial. The aim of this study was to isolate stem cells from mature human dental pulp and follicle and to determine their mesenchymal nature before differentiation based on the ISCT (International Society for C...

متن کامل

Differentiation of human embryonic stem cells into neurons

Human embryonic stem (ES) cells are undifferentiated pluripotent cells derived from the inner cell mass of blastocyst stage embryos. These unique cell lines have the potential to form virtually any cell type in the body and can be propagated in vitro indefinitely in an undifferentiated state. These cells are capable of forming embryoid bodies (EB) that contain cells from all three embryonic lin...

متن کامل

Differentiation of human embryonic stem cells into neurons

Human embryonic stem (ES) cells are undifferentiated pluripotent cells derived from the inner cell mass of blastocyst stage embryos. These unique cell lines have the potential to form virtually any cell type in the body and can be propagated in vitro indefinitely in an undifferentiated state. These cells are capable of forming embryoid bodies (EB) that contain cells from all three embryonic lin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Differentiation; research in biological diversity

دوره 77 5  شماره 

صفحات  -

تاریخ انتشار 2009